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TECHNICAL NOTE 2794

A COMPARTISON OF TWO METHODS OF LINEARIZED
CHARACTERISTICS FOR A SIMPLE
UNSTEADY FLOW

By Roger D. Sullivan
SUMMARY

Two methods of usging the concept of linearized characteristics are
derived for the one-dimensional unsteady flow in a tube that is rotated
about an axls perpendicular to the axis of the tube. One of the methods
corresponds to that used by Ferri in his basic work on the subject.
Solutions are made .by both methods for boundary conditions that allow
analytic solutions. Comparison shows that both methods give the same
results but there are significant differences in their application./

INTRODUCTION

The term linearized characteristics has been applied by Ferri in
reference 1 to a process of superposing a small perturbation on & basic
solution of a set of nonlinear hyperbolic differential equations. The
perturbation can be due to = change in the prescribed conditions along
the boundary, in the position of the boundary, or in the differential
equations themselves. The unknowns can each be expanded, for example,
into a power series in a parameter representative of the perturbation,
with unknown coefficients, except for the coefficient of the first term,
representing the basic solution, which is known. The equations for the
other coefficients are found to be linear and can be solved by charac-
teristic methods. As applied to steady supersonic flow, this procedure
has the advantage, stated roughly, over ordinary perturbation theory
that it can be used for perturbations of any known flow {(to which the
characteristic method of solution can be applied) rather than only for
perturbations of constant parallel flow.

A version of the process was used by Sauer (ref. 2) for determining
the steady supersonic flow sbout bodies of revolution at small angles of
attack but apparently haes not been used for other problems except in
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reference 1, where its application to a variety of problems is discussed.

In refererices 1 and 2, the expansion of the unknowns was substituted
into the original eguations of motion, which were then transformed into
characteristic form. The purpose of the present paper is to compare
that-method of procedure (called method A subsequently) with an alter-
nate method (method B) whereby expansions of the dependent and inde-

pendent variables are substituted into the characteristic form of the ; )

equations.

The comparison is made by developing the equatione of both methods
as they apply to a simple set of nonlinear hyperbolic equations of gas
dynamics, the set relating to the one-dimensional unsteady motion of-=a
gas in a tube of constant cross section with the addition of a perturba-
tion due to the rotation of the tube. The equations derived for this
case are then solved for a set of boundary conditions for which the
solution can be found analytically by both methods.

SYMBOLS
a,A speed of sound i
Cv specific heat at constant volume
£, unknown functions of one variable
k constant
1Y Pressure
R gas constant
8,5 entropy increment divided by gas constant
t,T time
u,u velocity
x,X . distance along tube measured from axis ofrotation
a,B characteristic parameters
Y ratio of—specific heats

e absolute temperature
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Lo Sv_ 2
R 7 -1
p density
w . angular velocity
Subscripts:

Letter subscripts indicate partial derivatives.

Number subscripts indicate order of approximation with the following

exceptions:
8q - reference value of s
Xg &and x3 inner and outer ends of tube, respectively

ANATYSIS OF UNSTEADY ROTATING FLOW

Development of Equations

The linearized-characteristics concept is applied to a relatively
gimple problem in order to bring out more clearly some of its essential
features. Consider the unsteady motion of an inviscid gas in a cylin-
drical tube which can rotate with angular veloclty w about an axis
perpendicular to the generators of the cylinder (fig. 1). Distance
along the tube 1s denoted by x measured from the axis of rotation.
Only values of x large in comparison with the greatest lateral dimen-
sion of the tube in a plane of rotation are considered so that the
local velocity of the rotation may be taken as wx. Cross flows and
latersl pressure gradients are neglected so that the flow considered
is one-dimensional. A perfect gas with constant specific heats is
assumed. '

When = 0, the ordinary equations of motion apply (ref. 3); that
is, the continuity equation

Pt + Puy + upy = O (1)
and the momentum equation

(2)

DIH.
N

up +ouu, = -
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When  # O, equation (1) is unaltered, but equatidon (2) has another
term representing the acceleration slong the tube due to the rotation

Up + Uy - 0°x = - % Px - (3)
The entropy is now assumed to be constant—throughout the gas so that
= kp’ (%)

See eppendix A for a treatment of the case of varlable entropy.‘ Equa-
tion (4), the equation of state . . . __ _

= pR6
and the relation

=9 _ yre
B.dp')'

allow the replacement of p and p by functions of & in equations (l)
and (3). Thus the equations of motion become

Aay +-8uy + Auay = 0
(5)

ug + Uuy + Aaay -afx =0
where
X:g?_v.= 2
R y -1

These equations are referred to subsequently as the "primary equations"
to distinguish them from the characteristic eqpations which are now
developed.

Adding and subtracting equations (5) gives

fl
Qo

w + (u + a)uy +——A,Et + (u + a)aﬂ - 0Px
(6)

0

ug + (u - a) - X[%t + (u - a) :] w2x

By the usual procedure for hyperbolic equations (ref. 3), new independent
varisbles « and B are introduced so that one equation of.equations (6)
has derivatives with respect t¢ o only and the other, with respect
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to B only. Then the lines
two sets of characteristics.

a = constant and 8 = constant

Xq = (u + a)tg
xB‘= (u - a)tB
g0 that
3 _ . I3 d
< - ta = + (u + a)ég

3 4.l Y-y
3B B ot + (u a’é;}
L

Thus, equations (6) become

Il
O

Ug, + A8g - wexta

ug - XaB - m?xtﬁ 0

Equations (7) and (8) form e set of four equations in the four
u, a, x, end t and are equivalent to equations (5). These
can always be solved by step-by-step methods.

Method A.- Linearized approximations to equations (5) are
developed. Let R

u(x,t) = U + w?ul + quQ + . . .

a(x,t) = A + w?al + muae t e oe

Only even powers of @ are used since equations (5) show that
is independent of the sign of . By substituting expressions
equations (5) and setting the coefficients of each power of
zero, the following equations are obtained:

My + AUy + NJAy = O

form the

This process is accomplished by writing

(7)

(8)

unknowns
equations

now

(9)

the problem
(9) into
equal to

(10)
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Aeqy + Auiy + AWajyx + Ugay + Myuy =0
(11)

uypy +Uupy + Majy +Uxuy + Mya] - x =0

kaet + Au2x + XUaex-+ Ugas + Myup + 8jujy + Auzaix = 0 (12)
12

Upg + Uupy + Maoy, +Uxup + My8s +-ujujy + Aajaljx = 0
and so forth., Or, when these equations are put into_charscteristic form

by the same method that was applied to equations (5)& the same equations
for the characteristics are found to apply to each set; that is,

Xq = (U + A)tg,
(13)
Xp = (U - A)tB
whereas the other equations are successively
Ug + Mg =0
(1)
Upg - Mg =0
Uy, *+ Mgy + (Ux + Mygltg(up + 81) - Xtg = 0
(15)
uig - XalB + (Ux - mx)tﬁ(ul -'&1) - xtB =0
Upg + Aoy + (Ux + Mg tg(up + ap) + (Y1x + My )te(ul + 81) = 0
(16)

upg - XaQB +—(Ux - LAx)tB(ug_ ag) + (uUix - lalx)tB(ul -a1) = 0]

and so forth.

The development and use of equations (13) to (16) is referred to
hereafter as "method A."

Method B.- Instead of" substituting expensions of u and & into
the -primery equations (eqs. (5)) as in method A, these expansions are
now substituted into the characteristic form of the equations (egs. (8)).
But the values u &nd a must be considered functions of o« and B
in equations (8), and the corresponding values of x and t are found
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from equations (7). Hence, x &and t are also expanded. The method
is, therefore, similar to the technique presented by Lighthill in refer-

ences 4 and 5.

By writing

u(a,B)

U + weUl + the + .

a(a,B) = A + waAl + whA2 .

X+a)2xl +CD}+X2+.

x(a,B)

t(a,B) = T + 02Ty + the + .

’ (172)

> (170)

J

substituting into equations (7) and (8), and setting the coefficient of
each power of o equal to zero, the following sets of equations are

obtained:

Il
(@]

Ug + Mg,

Ug - Mg

I
(@]

Il
(@]

Xo - (U + A)Tq

|
(@]

Xg - (U - A)Tg =

Uiq + A1y = XTy

Xqq - (U + A)Tyq

X1p - (U - A)TlB

Upg + Moy = X1Ty + XTqq

(UL + A1)T,,

(U1 - A1)Tp

(18a)

(18b)

(19a)

(19v)

(20a)
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]

Xog - (U + A)Tpg, = (U1 + AL)T1g + (Uz + Ap)Tq
(20b)

Xpp - (U - A)Tpg

U

(Up - A)Tap + (U2 1LA2)TB

end so forth. The dévelopment and use of these equations is referred
to as "method B."

Equations (18) and equations (13) and (14) are exactly the same
and their solutioni is the complete solution of the problem when w = O.
This solution, the basic solution, is essential to the solution of the
higher spproximetions and 1s considered known. The equations for the
higher approximations in both methods are all linear in the unknowns.

Application to Specific Boundary Conditions

In order to demonstrate some of the differenceg between the two
methods, an application to-a simple case for which the equations can
be integrated analytically is now made. Assume that the tube extends
from x = x5 to x =X (¥ > xg) and is closed at the ends. The

tube is initislly at rest, and the state of the gas is given by u =20
and a = ap, a constant. At time + = O the tube is started rotating

about x = 0 with angular velocity . The neglect of cross flows_and"
lateral pressure gradients might be completely unjustified in this case;
nevertheless, the problem is interesting mathematically.

The problem, then, is to solve the primary equtions (egs. (5))
with the following boundary conditions:

At-—t =0,

u=0; a=a, ' (X S x S x1) (21a)

At x =x5 and x = X3,
u =0 : _ : - (t 20) (21b)

The basic solution (i.e., for o = 0) is, ofcourse,

U=0
(22)

A= ag
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Since these are constants, this problem is similar to that of ordinary
linearized theory for steady supersonic flow about slender bodies.

The introduction of o« and B 1is somewhat arbitrary as long as
equations (13) are satisfied; these parameters may be conveniently
taken so that the two families of characteristics of the basic solution
are given by

-
Xx =85t +8
> (23)
X = -aot + o
so that
.
x = &t B
2
S (2k)
g =% =B
28.0 J

For method B, x and t are replaced by X and T in equations (23)
and (24). -

When o has a finite value, the xt-plane may be divided into
regions by the characteristics which pass through the points (xo,o)
and (x3;,0) @as shown in figure 2. The solution in region I is
unaffected by the walls at the ends. In region IT the effect of the
wall at x = x5 only is felt; whereas, in region III that at x = x3

only is felt. Both walls affect the flow in region IV.

The solution in region I is found first. (In sppendix B the
golution in region I is found in closed form.) With method A, equa-
tions (22) and (24) are substituted into equations (15). The first
equation of equations (15) is integrated with respect to a, the second
with respect to B, so that

1
u]_"'kal:g];BE +2CI.B+f([ﬂ

- LEGB + B° + g(ﬂ
8eo

> ' (25)

uy - Aag

~J
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where f(B)
conditions.

and g(a)

o = B, by equations (23), &nd that u; =

It is found that f£(B) = -3p°

and g(a)
expressions into equaticns (25) and solving for
lowing expressions. are obtalned:

These functions are determihed by noting that at +
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are arbitrary functions subject to the-boundary

o,

= 0 by equations (2la).

_-3@2.

~

BY substituting these
‘u; and aj, the fol-

1 -
u = 38(& ; ﬁ)(ou 5 B>= xt
> (26)
- e - B _B8g .2
a1 = 2xao( ) "B
Equations (16) can now be solved in the same manner. Thus,
3
- 1 (o +B\(eo = B\° _ 1.3
up = ‘3a3( z )( 2 ) = -3
© > (27)
oy = 23 - B)u _ (& + 3l
2%s )3 212 ]

Substituting these expressions into equations (9) gives as the solution

in region I

u = wext - % hxt3 E
& _q .1 ,2¢2 L 2x + 3 heby
&0 ar 2ln? :

The solution by method B starts with equations (19a),
the same as equations (15) in this case.

n - Y () -
By = - ﬁ(“_é‘ﬁ')e = -

-

~

(28)

o/

which are

" The solution, then, is

(29a)
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Now that these values are known, equations (19b) msy be solved. The
arbitrary functions are determined by meking lines in this solution
pass through the same points on the x-axis of the xt-plane as the cor-
responding lines of the basic solution; that is, Xy = T; = O when

a = B. Thus,

1 8) 52 1 2T
- o+ o - =1
Xl_2a02(2/(2) z XT
f (29b)
_x+1<a,-;3>3_x+1 3
T, = = T
1 6Aao3 2 61 J
Solving equations (20) in the same way gives
3
U =2}\.+l(a.+§)<cr.-[3> - 20 + 1 w3
2 6rag3\ 2 2 6)
\ (30a)
L
_ . 2x+1<m-s> - _2x+ 1, oh
b 2lPe 3 o2
f]
X =5x+h(m+g>(a-e>“=5x+hmu
2 2linagh ' 2 2 2k,
> (30Db)

- A DO T e - 5)5 _0r DG D 5

2
1203%,> 2 120\

J

Substitution into the series (17) glves as the solution for region I

u=w2XT+g)"6—;l-wl"}(T3+. ..

i:l-LweTe-&"_lthh'+ . .
20 2x 212

i
> (31a)
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-x +1 L R e .
x =X + L oPX12 + S ofxTd o L.
L (31b)

cr a1 23, O DOMNHT) s,
62 12022 - -

ot
|

The variables X and T may be interpreted simply as parameters
of the solution. Actually, they define polnts of Intersection of -cher-
acteristics in the basic solution corresponding to characteristics which
intersect at x,t "in. this solution. In any case, X and T may be
eliminated from equations (31); the procedure results in equations (28)
agalin. . == )

The only difference in the solution for region II is in the deter-
mination of the arbitrary functions resulting from integratlon. Those
functions resulting from Iintegration with respect to S may be deter-
mined by the condition that the solution must-suunal that fqr reglon I
on the boundary between the solutions; that is, when B = x5. The other

functions can then be found from the boundary condltion given by equa-
tions (21b). That condition, however, does not epply to the solution
of equations—(19b) and (20b). For these equations, the boundary con-
dition is replaced simply by

x=X+—w2Xl+a>L'X2+. .« .

&

aor
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The solution found by method A is

2 L
u = %(x - Xg) (&gt + Xg) - 21'-“;& 3(x - xo){8m03t3 +
C

3(3n - 7)x0a02t2 - lEBL + Wxg - (A + 2)x|xgagt +

El’?); + 3l)xO - (5a + Txl(x - xo)xo} e .o

2
I , ’ (32)
£ =1 - 2 02 aoe.te + 2xoaot - 2xo(x - Xp) + f

w

—2{(2h + Baghet « (3 + 5)xgeg3t3 + 12(x - xg)xpagtR +
2h)\“a '
0

3E(x * 3)xg - (5x'+'7)a (x - %0)%o80t -

L(x + 2)(bxg - x)(x - xo)%co ...
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and by method B - ) T . .. — _

2 ' ’ L
u=%|%e T - x~(80T - X + + =L ih(on + 1)Xa. 373 -
8 (0] XO( 0: XOZl 0
0 o 2lay3
Xo(80T - X + x0){4(2n + 1)agPT® - (131 +'11)(X - xp)aqT -
(X - xo)li(x - )X + (11 + l3)x£_)] o
> (33a)
8 -] . _w EZETQ + 2x5(8gT - X + xo:] - @ (2xn +1)e ke )
80 2he2 0 T ol °) euxaaon' ©
X5(a80T - X + xq) (T + 5)&02T2'+ [E}lx +—13)xO - (5% * 72%]&OT -
2(X-xo)[(5k+7)xo-2(x+2)g\ ...
o ' ) o/
- o? 2.2 - ]
x =X + 5 ay“T< - xo(a8pT - X + XY (MagT + X - x5) | + . .
2ka0 .
> (33b)
2 - :
t =T+ il;i;ggﬂi-E%%o3T3 +~3x0(ao$ - X + x5)(8gT +X - XQE] + . .
12)\%3 o _ L

The solutions for region III are obtalned in a ‘gimilar way and are
the same except that Xg is replaced by X1 and the signs of some terms

are reversed. 1In regidons II and III, i1t is found that the eliminstion
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of X and T from the solution by method B results again in the solu-
tion by method A.

Figure 3 shows characteristic dlagrams for the case X] = 2xg,

2

istics of the basic solution and, therefore, are the mathematical
characteristics used in the higher-order solutions; these lines are in
the xt-plane for method A and in the XT-plane for method B. The solid
lines are the true characteristic lines of the problem in the xt-plane.
They are found automatically by method B. Method A, as described so
far, does not give the true characteristic lines, but it is found that
the solution of equations (7), after the substitution of the values of

u and a (for example, egs. (28) for reglon I), results in the same
characteristic lines as have been found by method B. This determination
is necessary for the evaluation of the flow in the field, as illustrated
in figure 4 where typical distributions of velocity and speed of sound
are shown for a given time and in figure 5 where typical variations with
time at & given value of x are shown. In figures 4(a) and 5(a), the
results found by method A without the determination of the variation of
the characteristics are shown. That 1s, the lines PR and PS of
figure 3 are used as the boundaries between the regions. It is seen
that u and a are discontinuous at these boundaries (although the
quantity u - Aa 1is continuous elong PR &and u + Aa 1is continuous
along PS). 1In figures 4(b) and 5(b), the results are shown when the
true characteristics of the problem, the lines QR and QS of figure 3,
are taken as the boundaries. Method B automaticelly gives the results
of figures 4(b) and 5(b). Parts (a) and (b) are identical except where
they represent conditions in the regions between PR and QR and
between PS and QS in figure 3.

o=k ;%, and A =5 (A =1.4%)., The dashed lines are the character-

DISCUSSION

Some aspects of the preceding example which are due to the fact
that U and A are constants and which would not ordinarily be present
should be noted. (1) The unsolved equations of method A are unususlly
simple in comparison with those of method B since the terms containing
the unknowns expllcitly drop out. (2) As a result, the solution of
the equations of the first approximation is the same by both methods.

(3) The solution in method B for X; and T; affects the unknowns

u and a only in the second order and similarly for the higher
approximsetions.

The basic solution cannot usually be found analytically but must be
determined by & step-by-step procedure. In that case, the approximations
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must also be done step by step. The characteristic equations would be
written in a finite difference form with Ax and A8 cancelled out.
Thus, o and B would not be used explicitly. With method B, the
calculations would be carried out in the XT-plane where the charascter-
igtic directions remain constant as they do in the xt=plane in method A.
The transfer to the xt-plane, which consists of merely adding the terms
of equations (17b), can be delayed until the desired number of approxi-
mations has been made. ' '

From the preceding simple example, some inferences can be drawn
concerning the application of the two methods to other basic equations.
The unknowns do not occur explicitly (although they do appear as deriv-
atives) in equations (19a) and (20a), but, if they occur thus in the
basic characteristic equations, corresponding to equations (18a), they
will occur in the equations corresponding to (19a) and (20a). If the
original independent verisbles (X and T in the given example) appear
in the basic characteristic equations, the four equations in each approx-
imation of method B must all be solved simultaneously, rather than as
two pairs of equations as in the example. This complication is a serious
disadvantage of method B and may rule it out completely in such cases.

The relative simplicity of the equations of-method B, taken one by
one, is prcbably quite general. The appearance of derivatives of lower
approximations with respect to the originel independent variables in the
equations of method A 18 to be expected as long as the primary equations
are nonlinear, whereas they cannot appear in method B.

If an application is made to the two-dimensional supersonic flow
about a single body, for example, and conditions on the surface ofthe
body only are desired, the calculation of the true characteristics is
superfluous. 1In c&s8é&s siich as this, method A has the advantage of having
two less equations to solve in esch approximation. However, the pre-
ceding problem indicates that the true position of characteristics
through points of discontinuity in the boundery conditione is necessary
for the determination of the flow in the field and for the determination
of condlitions on another boundary if such characteristics intersect 1t.

This necessity for correcting characteristics as it applies to
linearized theory for steady supersonic¢c flow is discussed in reference 6.
There, a8 in the present example, what is here called the basic soclution
consists of constants so that this effect is felt only in the second and
higher approximations. In more genersl cases 1t would bé felt in the
first approximation. ’

In problems where the perturbaetion involves a change in the pesition
of the boundary, method B has the advantage that the position is constant
in the plane of the originel independent variables of the basic equations
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(for example, the XT-plane in the present problem) where the solution
is carried out. - :

When the perturbation involves the addition of a new dependent
variable, it can be handled in much the seme way as the entropy is

handled in this case (appendix A).
CONCLUDING REMARKS

Two methods of using the concept of linearized characteristics are
derived for the one-dimensional unsteady flow in a rotated tube. A com-
parison of both methods has shown that they give the same results but
there are significant differences in their application.

Langley Aeronautlcal Leboéoratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., July 11, 1952,
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APPENDIX A
DEVELOPMENT OF EQUATTIONS FOR VARIABLE ENTROFY

When the entropy is not constant throughout the fluid, equations (5)
are replaced by o ’ -

Aat + aux + Auaxy =0

(34)
ut + uuy + Aasy - %-aesx -aPX =0

where s 1is the entropy increment -divided by the gas constant. As long
as the flow 1s without shocks, the entropy obeys the relation

0 (35)

84 + usy

The characteristlc equations become

ug + heg - % asq - w2x£a =0 W
1 2
up - XaB + = asg - xtB =0
? B (36)
Xg = (u + a)tq
xg = (u - a)tB-- _
and equation (35) may be replaced by
satp + sgta = O (37)

(See ref. 3 for a derivation of the preceding eguations for = 0.)
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Writing

2 kL

s(x,t) =8 + wsy + ©¥sy + .

substituting this expression along with equations (9) into equations (3k)
and (35), and converting to characteristic form give the equations of
method A as

o)

Ug + AAgq - %ASQ, =
1 2o b (38)
Ug - Mg + 5 4S5 =0
Sqtp * Sgty = 0 9
1 ™
ujy + Mg + (Ux + Mx)ta(ul +8) - Z|as10 + (221 + u1>Sa] - xt, =0
u - Aa +U-}\A)tu—a)+;As + (2a, - uq)8S - Xt =0>
1B 1B (x XB(l 1 77718 (1 l)B B
sld.tB + S]_B‘ba'+ 2uletcctB =0 v
(39)

Upy + Mgy + (UX + xAx) g (up + ae) + (ulx + Xalx>ta,(ul + al) 0

%E&sza + (2&1 + ui) 81g * (23.2 + ua)sa + (ul + al) 2Sxtc-:_l =0
Upp - Mepp *+ (Uy - M) ta(up - ap) + (ugy - Magy)tp (v - 81) + g (ko)

%ASQB + (28.1 - ul) sip + (28.2 - uQ)SB - (ul - a]> 2SxtB] =0

Spqtp *+ Soptq * E(ulslx + u28x) tgtg = 0
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and so forth. Equations (13) still give the mathematical characteristic
direction for each approximation. If the true characteristics are to be
found, equations (7) still apply. : :

In order to obtaln the equations for method B, the expression

8(a,B) = 8 + w28y +alsy + . . .

along with equations (17) is substituted into equations (36) and (37),
so that . e e e e o L . . o

1 ™
Ua+'7\.Aa—7ASa=O
Ug - Mg + % ASg =0
B BTy T
(k1)
Xg - (U+ATg=0 [
Xg - (U - A)Tg =0
1 \
Ujq + Mg - ".;(Also:. +.Aslcx.) = XTy
1
Ui - Mg +3(A1Sp + AS1p) = XTg
(42)
X1q - (U + A)Tqq = (Ul + Al) To,
X1p = (U - A)T1p = (Uy - Ay)Tg
S1aTg + SaT1p + S18Ta *+ SgT1a = O
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Xfra + Xrla T

1
Upg + Mag - 5825 + A181q * ASpq)

1
MEB + 7(AESB + AlSlB + AS2B) XlTB + XTlB

UEB

Xog - (U + A)Tpy = (Ul + Al)Tla + (U2 + AEDTG, > (43)

(Ul - Al)TlB + (U2 - Ag)TB

XQB - (u - A)TQB

and so forth.

It is to be noted that, when the entropy of the primery solution S
is a constant, the equations of both methods simplify considerably. For
each approximation in this case, the equations for the entropy may be
solved first, then the equations for the velocity and speed of sound,
end then (in method B) the characteristic direction equations. Other-
wise, all three equations (in method A) or all five equations (in
method B) in each approximation must be solved simultaneously.
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APPENDIX B
SOLUTION IN CLOSED FORM FOR REGIOKN I
The form of equations (28) suggests the-substitutions
u = xf(t)
a = a5g(t)
Equations (5) become
ELigr=0 | (bk)
L, 220 = - - C(bs)

at

whereas the boundery condition given by equations (2la) becomes

£(0) = 0; g(0) =1
Equation (45) is easily integrated to give
f =w tanh wt

By substituting this value for  f, equation (44) can be solved togive

-1/x
g = (cosh ot) /

Therefore - .o
u = axx tanh ot

-1/n

L - (cosh wt)
ap

These functions may be expanded in power series; the procedure results
in equations (28) once more.
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Figure 1.- The rotating tube.
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(v) With true characteristics as boundaries between regions.
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Figure 4.- Distribution of velocity and speed of sound when %— = 0.3
0

for the case xq = 2x,, aa=-]2‘-%, and A =5 (y = 1.4).
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Figure 5.- Variation of velocity and speed of sound with time at i% = 0.4

for the case o = 1% and A =5 (y = 1.4).
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